Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Imaging Radiat Oncol ; 30: 100572, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38633281

RESUMO

Background and purpose: Retrospective dose evaluation for organ-at-risk auto-contours has previously used small cohorts due to additional manual effort required for treatment planning on auto-contours. We aimed to do this at large scale, by a) proposing and assessing an automated plan optimization workflow that used existing clinical plan parameters and b) using it for head-and-neck auto-contour dose evaluation. Materials and methods: Our automated workflow emulated our clinic's treatment planning protocol and reused existing clinical plan optimization parameters. This workflow recreated the original clinical plan (POG) with manual contours (PMC) and evaluated the dose effect (POG-PMC) on 70 photon and 30 proton plans of head-and-neck patients. As a use-case, the same workflow (and parameters) created a plan using auto-contours (PAC) of eight head-and-neck organs-at-risk from a commercial tool and evaluated their dose effect (PMC-PAC). Results: For plan recreation (POG-PMC), our workflow had a median impact of 1.0% and 1.5% across dose metrics of auto-contours, for photon and proton respectively. Computer time of automated planning was 25% (photon) and 42% (proton) of manual planning time. For auto-contour evaluation (PMC-PAC), we noticed an impact of 2.0% and 2.6% for photon and proton radiotherapy. All evaluations had a median ΔNTCP (Normal Tissue Complication Probability) less than 0.3%. Conclusions: The plan replication capability of our automated program provides a blueprint for other clinics to perform auto-contour dose evaluation with large patient cohorts. Finally, despite geometric differences, auto-contours had a minimal median dose impact, hence inspiring confidence in their utility and facilitating their clinical adoption.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38194372

RESUMO

Ensembles of contours arise in various applications like simulation, computer-aided design, and semantic segmentation. Uncovering ensemble patterns and analyzing individual members is a challenging task that suffers from clutter. Ensemble statistical summarization can alleviate this issue by permitting analyzing ensembles' distributional components like the mean and median, confidence intervals, and outliers. Contour boxplots, powered by Contour Band Depth (CBD), are a popular non-parametric ensemble summarization method that benefits from CBD's generality, robustness, and theoretical properties. In this work, we introduce Inclusion Depth (ID), a new notion of contour depth with three defining characteristics. First, ID is a generalization of functional Half-Region Depth, which offers several theoretical guarantees. Second, ID relies on a simple principle: the inside/outside relationships between contours. This facilitates implementing ID and understanding its results. Third, the computational complexity of ID scales quadratically in the number of members of the ensemble, improving CBD's cubic complexity. This also in practice speeds up the computation enabling the use of ID for exploring large contour ensembles or in contexts requiring multiple depth evaluations like clustering. In a series of experiments on synthetic data and case studies with meteorological and segmentation data, we evaluate ID's performance and demonstrate its capabilities for the visual analysis of contour ensembles.

3.
Adv Mater ; 36(6): e2303481, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37899747

RESUMO

Practical applications of mechanical metamaterials often involve solving inverse problems aimed at finding microarchitectures that give rise to certain properties. The limited resolution of additive manufacturing techniques often requires solving such inverse problems for specific specimen sizes. Moreover, the candidate microarchitectures should be resistant to fatigue and fracture. Such a multi-objective inverse design problem is formidably difficult to solve but its solution is the key to real-world applications of mechanical metamaterials. Here, a modular approach titled "Deep-DRAM" that combines four decoupled models is proposed, including two deep learning (DL) models, a deep generative model based on conditional variational autoencoders, and direct finite element (FE) simulations. Deep-DRAM integrates these models into a framework capable of finding many solutions to the posed multi-objective inverse design problem based on random-network unit cells. Using an extensive set of simulations as well as experiments performed on 3D printed specimens, it is demonstrate that: 1) the predictions of the DL models are in agreement with FE simulations and experimental observations, 2) an enlarged envelope of achievable elastic properties (e.g., rare combinations of double auxeticity and high stiffness) is realized using the proposed approach, and 3) Deep-DRAM can provide many solutions to the considered multi-objective inverse design problem.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...